В статье освещены современные методики и приборы, позволяющие неразрушающими методами контролировать прочность бетона. Проведен сравнительный анализ преимуществ современных приборов неразрушающего контроля прочности. Проанализирован ряд проблем, возникающих при разработке методик контроля.
Приборы неразрушающего контроля (ПНК) - условно принятый в технической литературе термин, включающий в себя приборы для толщинометрии и дефектоскопии покрытий и материалов, для определения твердости и прочности материалов, а также ряд других характеристик. Измерения вышеназванных параметров производятся различными методами: ультразвуковым (УЗ), рентгенографическим, вихретоковым, ударно-импульсным, упругого отскока, пластической деформации, магнитным, магнитопорошковым, термографическим, оптическим, импедансным, а также рядом других менее распространенных методов.
Само название метода, по-видимому, происходит от принятого в зарубежной литературе термина "non-destructive testing" (NDT), также периодически встречающегося в отечественной технической литературе.
Наибольшее распространение методы НК получили в области дефектоскопии металлов и изделий из твердых пластмасс. По этому вопросу выпущено огромное количество литературы, проводятся сотни исследований и экспериментов. Но в данной статье мы рассмотрим использование методов и средств НК применительно к изделиям и сооружениям из искусственного камня или, другими словами, бетонов.
Параметрами, подвергаемыми неразрушающему контролю в бетонах, являются прочность, величина защитного слоя, влажность, морозоустойчивость, влагонепроницаемость и ряд других. При производстве ЖБИ также контролируют натяжение арматуры и величину вибрации при уплотнении бетонной смеси. Но основным контролируемым параметром для бетонов является прочность на сжатие.
Прочность - свойство материала сопротивляться разрушению под действием внутренних напряжений, вызванных внешними силами или другими факторами (стесненная усадка, неравномерное нагревание и т. п.)
Существует несколько методов испытания бетонов на прочность:
Корреляционной называется зависимость, в которой каждому значению измеряемой величины может соответствовать несколько значений искомой величины. Другими словами, на соотношение измеряемый показатель - показания прибора (прочность) оказывают влияние несколько свойств материала, не все из которых поддаются четкой и однозначной математической, а, следовательно, и приборной интерпретации.
Для установления этой корреляционной зависимости, а, значит, и для определения прочности бетона предварительно устанавливают градуировочную (тарировочную) зависимость между прочностью бетона и косвенной характеристикой. Градуировочную зависимость устанавливают для бетонов одного проектного возраста и приготовленных из одинаковых материалов по результатам испытаний на прочность образцов-кубов. Итак, все методы неразрушающего контроля прочности бетона требуют построения индивидуальных градуировочных зависимостей по результатам испытаний стандартных образцов-кубов, изготовленных из бетона такого же состава и возраста, что и испытываемый образец.
На точность измерения прочности при измерении неразрушающими методами могут оказывать влияние такие факторы как: тип цемента, состав цемента, тип заполнителя, условия твердения, возраст бетона, влажность и температура поверхности, тип поверхности, карбонизация поверхностного слоя бетона и еще ряд других менее значимых факторов.
Далеко не все из перечисленных факторов можно учесть при построении градуировочной зависимости. Поэтому такие факторы нужно учитывать при разработке методики измерений на конкретный объект тестирования.
Основных методов НК, основанных на построении индивидуальных градуировочных зависимостей, несколько:
Это самые точные из методов НК прочности, поскольку для них допускается использовать универсальную градуировочную зависимость, в которой изменяются всего два параметра: 1) крупность заполнителя, которую принимают равной 1 при крупности менее 50 мм и 1,1 при крупности более 50 мм; 2) тип бетона - тяжелый либо легкий.
К недостаткам этого метода следует отнести его высокую трудоемкость и невозможность его использования в густоармированных участках, а также то, что он частично повреждает поверхность конструкции.
Наиболее широко в настоящее время используются приборы серии ПОС, выпускаемые "СКБ "Стройприбор"" г.Челябинск. Также до сих пор применяют приборы ГПНВ и ГПНС.
Метод сквозного УЗ прозвучивания позволяет, в отличие от всех остальных методов НК прочности, контролировать прочность не только в приповерхностных слоях бетона, но и прочность тела бетона конструкции.
Наиболее широко распространенные приборы, реализующие этот метод - УК1401 производства "Акустические Контрольные Системы" г. Москва, семейство приборов Пульсар - "НПП "Интерприбор" г.Челябинск, Бетон-32 - ЗАО "Интротест", УК-14П и ряд других.
Современная приборная база НК существенно отличается от рекомендуемой авторами ГОСТов и многочисленных исследований, проведенных в 80-х годах прошлого века. С начала 90-х годов прошлого столетия активно ведется разработка и производство приборов НК нового поколения с применением электроники и микропроцессорной техники, наращиваются их функциональные возможности. Методики же контроля, разработанные авторами ГОСТ 22690, не претерпели существенных изменений и остаются основой развития средств НК в отрасли.
До недавнего времени испытания бетонов на прочность проводили только заводы ЖБИ да несколько лабораторий при профильных институтах, таких как НИИЖБ. В последнее время в связи с бурным развитием строительства зданий и сооружений из монолитного железобетона и участившимися случаями разрушений зданий, вызванных недостаточным контролем над их состоянием, наблюдается большой интерес к средствам и методам для такого контроля. Причем, интерес этот проявляют не только потребители, но и производители такого оборудования, а также специализированные лаборатории, призванные разрабатывать новые и совершенствовать существующие методики.
Сложившаяся ситуация вполне экономически объяснима. Потребители хотят получить современный, простой и надежный в эксплуатации прибор; производители, почувствовав значительное увеличение спроса, стремятся реализовать как можно большее количество приборов; лаборатории по заказам как производителей, так и потребителей разрабатывают новые методики контроля, являющиеся дополнениями к существующей нормативной базе (ГОСТам).
В настоящем сложилась интересная ситуация: существующие ГОСТы содержат устаревшие требования как к самым методам контроля, так и приборным средствам, на которые ссылаются ГОСТы. Дело в том, что существующие ГОСТы разрабатывались в период, когда основой строительства являлся сборный железобетон. Поэтому они основывались на методиках, предназначенных, в основном, для НК при производстве сборных ЖБИ. Вопросы же контроля монолитного железобетона рассмотрены очень слабо.
Так, например, по ГОСТ 17624-86 применение способа поверхностного прозвучивания при ультразвуковом методе контроля прочности бетона не допускается. Разрешается только сквозное прозвучивание. Однако использование метода сквозного прозвучивания на реальных объектах крайне затруднено, очень сложно обеспечить приемлемую степень соосности приемного и передающего УЗ преобразователя, которые должны быть расположены с разных сторон конструкции. Зачастую негде провести длинный провод к преобразователю, да и потери энергии в длинных проводах будут крайне велики, чтобы результаты измерений можно было считать достоверными.
Еще пример: в соответствии с ГОСТ 18105-86 при изготовлении монолитных конструкций контроль прочности бетона должен вестись на заводах ЖБИ. В соответствии с этим ГОСТ прочность бетона регулируется в зависимости от значения коэффициента вариации: чем ниже значение коэффициента вариации, тем меньше может быть значение средней прочности. При этом надежность конструкции не уменьшается, так как расчетное значение прочности не изменяется.
Такой подход оправдывает себя для ЖБИ, изготовление которых территориально совмещено с изготовлением бетонной смеси. При возведении же монолитных конструкций процесс бетонирования отделен от процесса изготовления бетонной смеси пространством и временем. А, следовательно, свойства бетонной смеси на стройплощадке могут отличаться от свойств на заводе. И, кроме того, одна строительная площадка может иметь разных поставщиков бетонных смесей, которые могут отличаться друг от друга значениями коэффициента вариации.
Также не совсем правильной следует назвать практику изготовления и испытания стандартных бетонных образцов-кубов по целому ряду причин: объем изготовления стандартных образцов-кубов не соизмерим с объемами производства конструкций и сооружений, условия формования и твердения бетонных кубов не всегда соответствуют условиям изготовления конструкций. Поэтому прочностные характеристики стандартных образцов могут значительно отличаться от фактической прочности бетона в конструкциях.
Потребителей приборов НК прочности бетона можно разделить на три группы. И, хотя это деление весьма условно, все же накопленный опыт общения с потребителями, позволяет установить такую дифференциацию:
- Заводы стройиндустрии (ЖБИ, кирпичные, керамической плитки и т.д.). Имеют в своем составе лаборатории, оборудованные прессами, позволяющими проводить испытания стандартных образцов и специалистов, которые могут квалифицированно произвести такие испытания. Заводы, как правило, используют регламентированные составы смесей для изготовления изделий. Сырье поставляется несколькими поставщиками, качество продукции которых проверено. Поэтому могут устанавливать градуировочные зависимости под производимые у них составы изделий. Такой подход, с одной стороны, позволяет повысить точность измерений, т.к измерительное оборудование градуируется на предприятии под производимые на нем материалы. Во-вторых, позволяет снизить стоимость закупаемого оборудования, т.к. приборы могут поставляться "пустыми", - без установленных в них на предприятии-изготовителе градуировочных зависимостей. Чаще всего заводы приобретают приборы ИПС-МГ4.01 и УК1401 .
- Предприятия и фирмы, занимающиеся техническим обследованием существующих зданий и сооружений. Специалисты этих организаций, как правило, до начала обследований не имеют сведений ни о составе материалов несущих конструкций, ни о возрасте, т.к. зачастую необходимость обследования возникает в процессе реконструкции сооружений, которым ни один десяток лет. Также очень редки случаи, когда удается получить образцы-керны бетонов обследуемого сооружения в силу ряда причин, о которых говорилось выше.
Как же выходят из такой, прямо скажем, непростой ситуации? ГОСТ 22690-88 допускает использовать для уточнения градуировочной зависимости методы отрыва со скалыванием, скалывание ребра либо испытание кернов. Для этого результат, полученный одним из этих методов, делят на прочность, полученную в результате испытаний каким-либо из прочих методов НК. Полученный результат называют коэффициентом совпадения.
Для обследования остальных участков конструкции результаты, полученные одним из остальных методов, умножают на этот коэффициент. Так, например, в приборах серии ИПС ввод этого коэффициента осуществляется с клавиатуры, и результаты выдаются уже с его учетом.
Соответственно организации, проводящие обследования, должны иметь на своем вооружении не только полный спектр приборов для контроля прочности, но также дополнительные приборы, такие как дефектоскопы, георадары, влагомеры, термометры и ряд других приборов для повышения достоверности результатов.
Чаще всего такими организациями приобретаются приборы ИПС-МГ4.03 , ПОС-50-МГ4 "Скол", УК1401 .
- Ну и, наконец, третья группа - самая многочисленная. Сюда входят предприятия и фирмы, занимающиеся строительством сооружений из монолитного железобетона.
Перед ними стоят две задачи:
При этом основными требованиями здесь являются максимальная простота использования, универсальность и достаточная точность. То есть с прибором должен уметь работать неквалифицированный специалист по прочтении паспорта прибора.
Таким характеристикам наиболее полно соответствует прибор ИПС-МГ4.03, в котором предварительно установлены 16 градуировочных зависимостей по различным составам бетонов, кирпичу керамическому, силикатному; по различным условиям твердения бетона и по всем проектным возрастам.
Ну и, наконец, можно провести небольшой сравнительный анализ приборов, выпускаемых различными производителями. Начнем с чаще всего используемого и самого простого метода.
Прибор ИПС-МГ4.01
Прибор ИПС-МГ4.03 - самый популярный в настоящее время. Прибор имеет очень удобную организацию пользовательского интерфейса, выбор всех параметров измерений осуществляется сразу после включения в одном пункте меню с функцией круговой прокрутки.
Прибор ОНИКС-2.51/ОНИКС-2.52
Прибор УК1401
Приборы ПУЛЬСАР-1.0/1.1
Семейство приборов ПОС состоит из нескольких модификаций приборов:
Кроме перечисленных методов и аппаратных средств контроля существует и ряд других менее распространенных, таких как инфракрасный, электрического потенциала, вибрационно-акустический, акустико-эмиссионный применение которых находится в стадии опытной эксплуатации либо очень сложно.
Естественно, что в такой небольшой статье нельзя рассмотреть все разнообразие методов и аппаратных средств контроля. Заинтересованные читатели могут обратиться к списку литературы.
Литература
КОНТАКТЫ
г. Омск: +7 (3812) 382 923, т/ф 433 660КАТАЛОГ